------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of operations on characters
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.Char.Properties where

open import Data.Bool using (Bool)
open import Data.Char.Base

import Data.Nat.Base as 
import Data.Nat.Properties as ℕₚ

open import Function
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (map′;  ⌊_⌋)
open import Relation.Binary
  using ( _⇒_; Reflexive; Symmetric; Transitive; Substitutive
        ; Decidable; IsEquivalence; IsDecEquivalence
        ; Setoid; DecSetoid; StrictTotalOrder)
open import Relation.Binary.PropositionalEquality.Core
import Relation.Binary.Construct.On as On
import Relation.Binary.PropositionalEquality as PropEq

------------------------------------------------------------------------
-- Primitive properties

open import Agda.Builtin.Char.Properties
  renaming ( primCharToNatInjective to toℕ-injective)
  public

------------------------------------------------------------------------
-- Properties of _≈_

≈⇒≡ : _≈_  _≡_
≈⇒≡ = toℕ-injective _ _

≈-reflexive : _≡_  _≈_
≈-reflexive = cong toℕ

≈-refl : Reflexive _≈_
≈-refl = refl

≈-sym : Symmetric _≈_
≈-sym = sym

≈-trans : Transitive _≈_
≈-trans = trans

≈-subst :  {}  Substitutive _≈_ 
≈-subst P x≈y p = subst P (≈⇒≡ x≈y) p

infix 4 _≈?_
_≈?_ : Decidable _≈_
x ≈? y = toℕ x ℕₚ.≟ toℕ y

≈-isEquivalence : IsEquivalence _≈_
≈-isEquivalence = record
  { refl  = λ {i}  ≈-refl {i}
  ; sym   = λ {i j}  ≈-sym {i} {j}
  ; trans = λ {i j k}  ≈-trans {i} {j} {k}
  }

≈-setoid : Setoid _ _
≈-setoid = record
  { isEquivalence = ≈-isEquivalence
  }

≈-isDecEquivalence : IsDecEquivalence _≈_
≈-isDecEquivalence = record
  { isEquivalence = ≈-isEquivalence
  ; _≟_           = _≈?_
  }

≈-decSetoid : DecSetoid _ _
≈-decSetoid = record
  { isDecEquivalence = ≈-isDecEquivalence
  }

------------------------------------------------------------------------
-- Properties of _≡_

infix 4 _≟_
_≟_ : Decidable {A = Char} _≡_
x  y = map′ ≈⇒≡ ≈-reflexive (x ≈? y)

≡-setoid : Setoid _ _
≡-setoid = PropEq.setoid Char

≡-decSetoid : DecSetoid _ _
≡-decSetoid = PropEq.decSetoid _≟_

------------------------------------------------------------------------
-- Boolean equality test.
--
-- Why is the definition _==_ = primCharEquality not used? One reason
-- is that the present definition can sometimes improve type
-- inference, at least with the version of Agda that is current at the
-- time of writing: see unit-test below.

infix 4 _==_
_==_ : Char  Char  Bool
c₁ == c₂ =  c₁  c₂ 

private

  -- The following unit test does not type-check (at the time of
  -- writing) if _==_ is replaced by primCharEquality.

  data P : (Char  Bool)  Set where
    p : (c : Char)  P (c ==_)

  unit-test : P ('x' ==_)
  unit-test = p _

------------------------------------------------------------------------
-- Properties of _<_

infix 4 _<?_
_<?_ : Decidable _<_
_<?_ = On.decidable toℕ ℕ._<_ ℕₚ._<?_

<-strictTotalOrder-≈ : StrictTotalOrder _ _ _
<-strictTotalOrder-≈ = On.strictTotalOrder ℕₚ.<-strictTotalOrder toℕ

------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

-- Version 1.1

toNat-injective = toℕ-injective
{-# WARNING_ON_USAGE toℕ-injective
"Warning: toNat-injective was deprecated in v1.1.
Please use toℕ-injective instead."
#-}

setoid = ≡-setoid
{-# WARNING_ON_USAGE setoid
"Warning: setoid was deprecated in v1.1.
Please use ≡-setoid instead."
#-}

decSetoid = ≡-decSetoid
{-# WARNING_ON_USAGE decSetoid
"Warning: decSetoid was deprecated in v1.1.
Please use ≡-decSetoid instead."
#-}

strictTotalOrder = <-strictTotalOrder-≈
{-# WARNING_ON_USAGE strictTotalOrder
"Warning: strictTotalOrder was deprecated in v1.1.
Please use <-strictTotalOrder-≈ instead."
#-}