open import Data.List
open import Data.Product
open import Level
open import Library.Eq
open import Relation.Binary using (Decidable; Rel)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
module Library.List where
open import Data.List.Base public using (List; []; _∷_; foldl)
open import Data.List.All public using (All; []; _∷_) hiding (module All)
AssocList : ∀{a b} {A : Set a} (B : Set b) (xs : List A) → Set (a ⊔ b)
AssocList B xs = All (λ _ → B) xs
module _ {a b} {A : Set a} {B : Set b} where
_↦_∷_ : ∀ (x : A) (v : B) {xs} (vs : AssocList B xs) → AssocList B (x ∷ xs)
x ↦ v ∷ vs = _∷_ {x = x} v vs