{-# OPTIONS --without-K --safe #-}
module Relation.Nullary.Decidable.Core where
open import Level using (Level; Lift)
open import Data.Bool.Base using (Bool; false; true; not; T)
open import Data.Unit.Base using (⊤)
open import Data.Empty
open import Data.Product
open import Function
open import Agda.Builtin.Equality
open import Relation.Nullary
private
variable
p q : Level
P : Set p
Q : Set q
⌊_⌋ : Dec P → Bool
⌊ yes _ ⌋ = true
⌊ no _ ⌋ = false
True : Dec P → Set
True Q = T ⌊ Q ⌋
False : Dec P → Set
False Q = T (not ⌊ Q ⌋)
toWitness : {Q : Dec P} → True Q → P
toWitness {Q = yes p} _ = p
toWitness {Q = no _} ()
fromWitness : {Q : Dec P} → P → True Q
fromWitness {Q = yes p} = const _
fromWitness {Q = no ¬p} = ¬p
toWitnessFalse : {Q : Dec P} → False Q → ¬ P
toWitnessFalse {Q = yes _} ()
toWitnessFalse {Q = no ¬p} _ = ¬p
fromWitnessFalse : {Q : Dec P} → ¬ P → False Q
fromWitnessFalse {Q = yes p} = flip _$_ p
fromWitnessFalse {Q = no ¬p} = const _
module _ {p} {P : Set p} where
From-yes : Dec P → Set p
From-yes (yes _) = P
From-yes (no _) = Lift p ⊤
from-yes : (p : Dec P) → From-yes p
from-yes (yes p) = p
from-yes (no _) = _
From-no : Dec P → Set p
From-no (no _) = ¬ P
From-no (yes _) = Lift p ⊤
from-no : (p : Dec P) → From-no p
from-no (no ¬p) = ¬p
from-no (yes _) = _
dec-yes : (p? : Dec P) → P → ∃ λ p′ → p? ≡ yes p′
dec-yes (yes p′) p = p′ , refl
dec-yes (no ¬p) p = ⊥-elim (¬p p)
dec-no : (p? : Dec P) → ¬ P → ∃ λ ¬p′ → p? ≡ no ¬p′
dec-no (yes p) ¬p = ¬p , ⊥-elim (¬p p)
dec-no (no ¬p′) ¬p = ¬p′ , refl
dec-yes-irr : (p? : Dec P) → Irrelevant P → (p : P) → p? ≡ yes p
dec-yes-irr p? irr p with dec-yes p? p
... | p′ , eq rewrite irr p p′ = eq