{-# OPTIONS --without-K --safe #-}
{-# OPTIONS --warn=noUserWarning #-}
module Data.Integer.Base where
open import Data.Nat.Base as ℕ
using (ℕ) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_)
open import Data.Sign as Sign using (Sign) renaming (_*_ to _S*_)
open import Function
open import Level using (0ℓ)
open import Relation.Nullary using (¬_)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality using (_≡_)
infix 8 -_
infixl 7 _*_ _⊓_
infixl 6 _+_ _-_ _⊖_ _⊔_
infix 4 _≤_ _≥_ _<_ _>_ _≰_ _≱_ _≮_ _≯_
open import Agda.Builtin.Int public
using ()
renaming
( Int to ℤ
; pos to +_
; negsuc to -[1+_]
)
pattern +0 = + 0
pattern +[1+_] n = + (ℕ.suc n)
data _≤_ : ℤ → ℤ → Set where
-≤- : ∀ {m n} → (n≤m : n ℕ.≤ m) → -[1+ m ] ≤ -[1+ n ]
-≤+ : ∀ {m n} → -[1+ m ] ≤ + n
+≤+ : ∀ {m n} → (m≤n : m ℕ.≤ n) → + m ≤ + n
data _<_ : ℤ → ℤ → Set where
-<- : ∀ {m n} → (n<m : n ℕ.< m) → -[1+ m ] < -[1+ n ]
-<+ : ∀ {m n} → -[1+ m ] < + n
+<+ : ∀ {m n} → (m<n : m ℕ.< n) → + m < + n
_≥_ : Rel ℤ 0ℓ
x ≥ y = y ≤ x
_>_ : Rel ℤ 0ℓ
x > y = y < x
_≰_ : Rel ℤ 0ℓ
x ≰ y = ¬ (x ≤ y)
_≱_ : Rel ℤ 0ℓ
x ≱ y = ¬ (x ≥ y)
_≮_ : Rel ℤ 0ℓ
x ≮ y = ¬ (x < y)
_≯_ : Rel ℤ 0ℓ
x ≯ y = ¬ (x > y)
∣_∣ : ℤ → ℕ
∣ + n ∣ = n
∣ -[1+ n ] ∣ = ℕ.suc n
sign : ℤ → Sign
sign (+ _) = Sign.+
sign -[1+ _ ] = Sign.-
infix 5 _◂_ _◃_
_◃_ : Sign → ℕ → ℤ
_ ◃ ℕ.zero = + ℕ.zero
Sign.+ ◃ n = + n
Sign.- ◃ ℕ.suc n = -[1+ n ]
data SignAbs : ℤ → Set where
_◂_ : (s : Sign) (n : ℕ) → SignAbs (s ◃ n)
signAbs : ∀ i → SignAbs i
signAbs -[1+ n ] = Sign.- ◂ ℕ.suc n
signAbs +0 = Sign.+ ◂ ℕ.zero
signAbs +[1+ n ] = Sign.+ ◂ ℕ.suc n
-_ : ℤ → ℤ
- -[1+ n ] = +[1+ n ]
- +0 = +0
- +[1+ n ] = -[1+ n ]
_⊖_ : ℕ → ℕ → ℤ
m ⊖ ℕ.zero = + m
ℕ.zero ⊖ ℕ.suc n = -[1+ n ]
ℕ.suc m ⊖ ℕ.suc n = m ⊖ n
_+_ : ℤ → ℤ → ℤ
-[1+ m ] + -[1+ n ] = -[1+ ℕ.suc (m ℕ+ n) ]
-[1+ m ] + + n = n ⊖ ℕ.suc m
+ m + -[1+ n ] = m ⊖ ℕ.suc n
+ m + + n = + (m ℕ+ n)
_-_ : ℤ → ℤ → ℤ
i - j = i + (- j)
suc : ℤ → ℤ
suc i = (+ 1) + i
pred : ℤ → ℤ
pred i = (- + 1) + i
_*_ : ℤ → ℤ → ℤ
i * j = sign i S* sign j ◃ ∣ i ∣ ℕ* ∣ j ∣
_⊔_ : ℤ → ℤ → ℤ
-[1+ m ] ⊔ -[1+ n ] = -[1+ ℕ._⊓_ m n ]
-[1+ m ] ⊔ + n = + n
+ m ⊔ -[1+ n ] = + m
+ m ⊔ + n = + (ℕ._⊔_ m n)
_⊓_ : ℤ → ℤ → ℤ
-[1+ m ] ⊓ -[1+ n ] = -[1+ ℕ._⊔_ m n ]
-[1+ m ] ⊓ + n = -[1+ m ]
+ m ⊓ -[1+ n ] = -[1+ n ]
+ m ⊓ + n = + (ℕ._⊓_ m n)
infix 4 _<′_ _>′_ _≮′_ _≯′_
_<′_ : Rel ℤ _
x <′ y = suc x ≤ y
{-# WARNING_ON_USAGE _<′_
"Warning: _<′_ was deprecated in v1.1.
Please use _<_ instead."
#-}
_>′_ : Rel ℤ _
x >′ y = y <′ x
{-# WARNING_ON_USAGE _>′_
"Warning: _>′_ was deprecated in v1.1.
Please use _>_ instead."
#-}
_≮′_ : Rel ℤ _
x ≮′ y = ¬ (x <′ y)
{-# WARNING_ON_USAGE _≮′_
"Warning: _≮′_ was deprecated in v1.1.
Please use _≮_ instead."
#-}
_≯′_ : Rel ℤ _
x ≯′ y = ¬ (x >′ y)
{-# WARNING_ON_USAGE _≯′_
"Warning: _≯′_ was deprecated in v1.1.
Please use _≯_ instead."
#-}