module Codata.Colist where
open import Size
open import Data.Nat.Base
open import Data.Product using (_×_ ; _,_)
open import Data.These using (These; this; that; these)
open import Data.Maybe using (Maybe; nothing; just)
open import Data.List.Base using (List; []; _∷_)
open import Data.List.NonEmpty using (List⁺; _∷_)
open import Data.BoundedVec as BVec using (BoundedVec)
open import Function
open import Codata.Thunk using (Thunk; force)
open import Codata.Conat as Conat using (Conat ; zero ; suc)
open import Codata.Delay as Delay using (Delay ; now ; later)
open import Codata.Stream using (Stream ; _∷_)
data Colist {ℓ} (A : Set ℓ) (i : Size) : Set ℓ where
[] : Colist A i
_∷_ : A → Thunk (Colist A) i → Colist A i
module _ {ℓ} {A : Set ℓ} where
length : ∀ {i} → Colist A i → Conat i
length [] = zero
length (x ∷ xs) = suc λ where .force → length (xs .force)
replicate : ∀ {i} → Conat i → A → Colist A i
replicate zero a = []
replicate (suc n) a = a ∷ λ where .force → replicate (n .force) a
infixr 5 _++_ _⁺++_
_++_ : ∀ {i} → Colist A i → Colist A i → Colist A i
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ λ where .force → xs .force ++ ys
lookup : ℕ → Colist A ∞ → Maybe A
lookup n [] = nothing
lookup zero (a ∷ as) = just a
lookup (suc n) (a ∷ as) = lookup n (as .force)
colookup : ∀ {i} → Conat i → Colist A i → Delay (Maybe A) i
colookup n [] = now nothing
colookup zero (a ∷ as) = now (just a)
colookup (suc n) (a ∷ as) =
later λ where .force → colookup (n .force) (as .force)
take : ∀ (n : ℕ) → Colist A ∞ → BoundedVec A n
take zero xs = BVec.[]
take n [] = BVec.[]
take (suc n) (x ∷ xs) = x BVec.∷ take n (xs .force)
cotake : ∀ {i} → Conat i → Stream A i → Colist A i
cotake zero xs = []
cotake (suc n) (x ∷ xs) = x ∷ λ where .force → cotake (n .force) (xs .force)
fromList : List A → Colist A ∞
fromList [] = []
fromList (x ∷ xs) = x ∷ λ where .force → fromList xs
_⁺++_ : ∀ {i} → List⁺ A → Thunk (Colist A) i → Colist A i
(x ∷ xs) ⁺++ ys = x ∷ λ where .force → fromList xs ++ ys .force
fromStream : ∀ {i} → Stream A i → Colist A i
fromStream = cotake Conat.infinity
module _ {a b} {A : Set a} {B : Set b} where
map : ∀ {i} (f : A → B) → Colist A i → Colist B i
map f [] = []
map f (a ∷ as) = f a ∷ λ where .force → map f (as .force)
unfold : ∀ {i} → (A → Maybe (A × B)) → A → Colist B i
unfold next seed with next seed
... | nothing = []
... | just (seed′ , b) = b ∷ λ where .force → unfold next seed′
scanl : ∀ {i} → (B → A → B) → B → Colist A i → Colist B i
scanl c n [] = n ∷ λ where .force → []
scanl c n (a ∷ as) = n ∷ λ where .force → scanl c (c n a) (as .force)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
alignWith : ∀ {i} → (These A B → C) → Colist A i → Colist B i → Colist C i
alignWith f [] bs = map (f ∘′ that) bs
alignWith f as@(_ ∷ _) [] = map (f ∘′ this) as
alignWith f (a ∷ as) (b ∷ bs) =
f (these a b) ∷ λ where .force → alignWith f (as .force) (bs .force)
zipWith : ∀ {i} → (A → B → C) → Colist A i → Colist B i → Colist C i
zipWith f [] bs = []
zipWith f as [] = []
zipWith f (a ∷ as) (b ∷ bs) =
f a b ∷ λ where .force → zipWith f (as .force) (bs .force)
module _ {a b} {A : Set a} {B : Set b} where
align : ∀ {i} → Colist A i → Colist B i → Colist (These A B) i
align = alignWith id
zip : ∀ {i} → Colist A i → Colist B i → Colist (A × B) i
zip = zipWith _,_
ap : ∀ {i} → Colist (A → B) i → Colist A i → Colist B i
ap = zipWith _$′_